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1. Select Modeling Technique 

 1.1 Modeling technique 

● Given our task of using reinforcement learning for optimizing traffic signal control, we 

can break down our potential approaches into two different categories: 

○ Value-based: Where we look to maximize the rewards we obtain (for example, 

Q-learning), from which initial cases and decisions are sensibly random but learn 

from the results of previous actions. 

○ Policy-based: Where probabilities are given and iterated for each action, given 

environmental and hyperparameters. 

● Various optimizations have been lightly introduced – for example, the use of neural 

networks for Q-table selection in the value-based approach. While these optimizations 

have been made aware, we remain shallow on their implementation, as they are not our 

main focus. These experiments will be noted further in section 3 of the report. 

● The reinforcement models we will implement and introduce in this report are a Deep Q-

Network (DQN), Proximal Policy Optimization (PPO), and Soft Actor-Critic (SAC).  

 

1.2 Modeling assumptions 

● One of the main modeling assumptions for our tasks involves our environment – as noted 

in prior reports, rather than basing our models strictly upon the dataset provided, we 

opted to use the traffic simulation tool SUMO – using our original dataset as a form of 

baseline aggregate. In turn, our assumption stands that the SUMO environment is 

representative of real-world traffic scenarios, given our configurations. 

○ While representative of aggregate traffic information, as we noted, it comes with 

the assumption that no accidents or excessive reaction times will be simulated, 

however, emergency stops and other abrupt behaviors can be anticipated and 

regarded in our state. 

○ All inputs to the model flows are drawn with the assumption of a relatively 

normal distribution – including intersection entry speeds, and turning ratios, with 

the expected value and standard deviation representative of our aggregate 

standards noted in our data preparation report, post-smoothing. This assumption 

is drawn as it stands infeasible and counterintuitive to directly represent vehicles 

from the dataset; as we believe, the introduction of noise will further improve the 

model’s generalizations. 

○ As prospected after our previous report, a reduction of scope has been drawn 

from optimizing Lankershim Boulevard to a single 4-way intersection along itself 

– for this task, we’ve chosen intersection 2. All aggregate statistics remain on the 

basis of the entire boulevard, while turning ratios, as are to be noted, will be 

relevant to the given intersection. We draw the assumption, of the reduction of 

scope, on the performance of gains of intersection 2 being generalized to the 

remainder of the boulevard given the use of the same modeling techniques on 

each given intersection without awareness of a shared intersection state. 
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○ Intersection entry speed, as noted to be normally distributed, is also assumed to 

be similar to the behaviors of the entire boulevard; while turning ratios are 

explicit to our given intersection, entry speeds are generalized from the 

boulevards aggregate, smoothed, velocities. For the sake of the model, zero 

velocities have been removed, given our use of a desired maximum speed on the 

vehicle types of the simulation, leading to an average velocity, post-smoothing, 

of roughly 11.3 m/s, alongside a factored standard deviation of 0.69; the speed 

factor also has a lower cap of 0.75 and an upper cap of  2, as to include the peaks 

noted in our data preparation report, while removing obvious idle states. Turning 

ratios/volume for the vehicles can also be found in the data preparation report for 

intersection 2 with no further adjustments. 

○ An assumption is finally drawn that the volume of traffic entering intersection 2 

(as noted in our prior reduction of scope) at each time is predetermined and will 

not change unpredictably as the algorithm is being trained. 

● We will also try to keep a random percentage of swaps (typically called signified by 

gamma) for specific cases and to avoid some out-of-scope scenarios. 

● It is presumed that both the set of possible states for the system and the set of possible 

actions for the agent are discrete and finite. Discrete action spaces limit our choice of RL 

algorithms, as many only work with continuous action spaces. 

 

2. Generate Test Design 

● When it comes to generating our test design, in our case, given access to prior works in 

the field, we intend to draw comparisons directly to competing models over shared 

evaluation statistics – primarily on the basis of vehicle delay/wait times. What must be 

noted before drawing these comparisons is the importance of consistent state – that is, 

ensuring similarity of builds in SUMO, consistent intersection design patterns, alongside 

vehicle speeds and ambiguous environmental state parameters. To accomplish this, we 

intend to create or share a standard configuration among competing builds when possible; 

however, due to hardware limitations, equitable build parameters (including sample size, 

depth of neural networks, and other resource-intensive hyper-parameters) may be 

minimized to ensure proper builds – these changes, while necessary, may reduce the 

validity of any comparisons drawn. If infeasible, efforts may be made to draw our 

configuration similar to the originally reported work, where we’ll compare the results 

from there. 



 

● As was alluded to prior, when it comes to evaluating the performance between competing 

models, we have a few intended evaluative statistics: 

○ Mean wait time: The mean wait time, an approach taken by most pre-existing 

models, takes the average wait time of vehicles passing through the given 

intersection as a basis of effective flow. We aim to meet or achieve marginal 

improvements over existing models, given our limitations, of up to roughly 10% 

for our given state when assessing mean wait times. Against traditional signal 

timings, we aim for up to a 50% improvement in mean wait time. 

○ Max wait time: The max wait time, an approach more closely-nit to our intended 

experimentation, measures the maximum wait time a vehicle may experience in a 

given intersection. This serves as a basis of measurement for the unrealistic 

priority a model may provide for a given lane of the intersection.  

■ While an interesting evaluative statistic, we reserve this for 

experimentation if time allows – as for the time being, we’ll be focused 

on mean wait time improvement. Regardless, similar to the mean wait 

times, if evaluated, we can aim to meet or offer marginal improvements 

over existing models, for up to a roughly 10% improvement in average 

max weight times. Against traditional signal timings, we aim for up to a 

50% improvement, to be paired alongside the improvements noted in 

mean wait time. 

● Finally, we evaluate the obtained outcomes to verify whether we have accomplished our 

objective. If we fail to meet our goal, adjustments to our models may be made in an 

attempt to enhance the model's performance relative to our evaluations. 

 

3. Build the Model 

3.1 Parameter setting 

● When setting our parameters, there are a few notable factors that directly affect the rate at 

which the model may learn at each “point”: 

○ Learning rate: The importance drawn to new results – the higher the learning 

rate, the increased impact of the new result. 

○ Discount rate: The value applied to reward values after each iteration – a higher 

discount rate leading to a more rapid decline in anticipated reward as time 

progresses. 

○ Exploration rate: The percentage of “random” choices applied to the given model 

– aiding in loop avoidance while incentivizing more experimental actions for 

long-term gains. 

● These parameters help to differentiate the ‘exploring vs exploiting’ phenomenon. While 

exploring, we tend to have high exploration value in an attempt to learn – where we try to 

develop the initial “thinking” process. While exploiting, the exploration value is low, and 

the learning rate decreases in an attempt to learn and adapt to specific situations – it’s 

worth noting that here, discount rates are often increased in an attempt to reach good 

solutions as fast as possible. 



 

● While not necessarily applicable as direct parameters, it’s best to note some further 

configurations we may offer more model adjustments and improvement: 

○ Reward Function: The reward function, incorporating state to drive incentive for 

selection of preferred actions – in our case, this will be on the basis of 

minimizing average wait times, for which inverting the cumulative wait time is 

common practice/punishment. 

○ Network Architecture: The neural network architecture used by each of the RL 

algorithms. Because of our limited compute and small action space, we keep the 

neural networks small (only a few fully connected layers at most). This is often 

used for policy selection, as is the case with DQNs. 

● And, as was noted in section 1 of the report, while not directly model parameters, further 

parameters of state, including vehicle speed distributions and turning ratios/counts must 

be recognized as configurations. Their intended behaviors have since been outlined in our 

explanation of scope. 

 

 

3.2 Models 

● For our model development, we used Python with the aid of libraries including 

TensorFlow, Keras, rllib, and sumo-rl – baseline projects were also referenced and 

utilized in our experimentation, including Intellilight for initial prospects in using a DQN 

model – later DQN implementations were more in reference to the aforementioned use of 

rllib and sumo-rl, due to their increased workflow and compatibility. 

○ We utilized rllib more specifically, for its DQN, PPO, and SAC model 

implementations and integrations. These implementations will be noted in our 

model descriptions. 

● The system's performance should be predicted using a model that is built to learn from 

how the environment, which includes traffic patterns, intersection layouts, and other 

external variables, interacts with the traffic light control system.  

● In reinforcement learning, the agent interacts with an environment by taking actions and 

receiving rewards (positive or negative). The goal of the agent is to learn a policy, and 

illicit rules for choosing actions based on the state environment. 

○ Normally with reinforcement learning, we have policy-based and value-based 

approaches: as noted prior, with a policy-based approach we try to learn a policy 

by setting the situation to an action, normally via a function, while with the 

value-based approach, we look for the option that maximizes the reward that can 

be expected. In our case, we will set our policy via a neural network that takes 

into account the number of cars stopped.  

 

3.3 Model description 

● We have 3 principal elements: the agent, the environment/state, and the iterations 

between them. In this case, the traffic light controller is the agent, and everything else is 

part of the environment.  

● The overall goal of the model is to find the optimal policy that maximizes the return. The 

return is a function of a sequence of rewards weighted by γ (discount rate). In order to 

predict the expected return, two different functions are necessary. The state-value 



 

function Vπ (s) estimates how beneficial it is to be in a particular state (s) under policy π. 

On the other hand, the state-action function Qπ (s, a) estimates how beneficial it is to take 

a particular action (a) in state s under policy π. These functions help the agent to choose 

the most appropriate actions in order to maximize the expected return. 

 

 
 

● We utilized rllib, a library for implementing reinforcement learning models as noted 

prior, to construct our models which consist of Neural Networks or other functions that 

interact with the reward. While rllib does not provide complete control, it offers various 

forms of tuning and adjustment, including the ability to choose between multiple Neural 

Networks, alongside how rewards are distributed within a certain range. 

● In our models, we explored a few different reward functions: 

○ Cumulative vehicle delay (default): 𝑟𝑡 = 𝐷𝑎,𝑡 −𝐷𝑎,𝑡+1  

■ This reward represents the change in total vehicle delay from the 

previous time step. It is more exploitative, with no long-term rewards 

○ Vehicle queue reward function: 𝑟𝑡 = −𝛴𝐶𝑠𝑡𝑜𝑝 

■ This reward represents the total number of vehicles that are waiting in 

the intersection as a negative reward. 

● As for the models we chose to explore, we’ve worked with the following three: 

○ PPO - Proximal Policy Optimization is a policy gradient reinforcement learning 

algorithm – a subset of the policy-based methods we introduced earlier in the 

report. This means it seeks to optimize the policy directly, rather than estimating 

a value function to start. To optimize the policy, policy gradient methods utilize 

gradient descent with respect to the expected return. PPO improves the stability 

of training by limiting the changes made to the policy per step. It is simple to 

implement, easy to train, and works well on discrete action spaces. PPO is an on-

policy algorithm, meaning it learns based off of the current policy the agent is 

using. We’d expect PPO to perform well on this task, with improved 

performance over DQN. 

■ Implemented with a 2-layer fully-connected neural network, and 

experimented with both cumulative vehicle delay, and vehicle queue 

reward functions. 



 

○ DQN - Deep Q-Networks are the deep learning version of Q-learning, utilizing 

neural networks to estimate the q-values for all states and actions. A q-value is 

the expected reward given a state and action. DQN is a value-based method, 

meaning it uses this estimated value to determine the best policy. DQNs are 

simple to implement – being an off-policy method, it doesn’t utilize the current 

policy to learn and can reference previous policies from a replay buffer. We’d 

consider this as our baseline reinforcement learning model. 

■ Implemented with a 2-layer fully-connected neural network, and 

experimented with both cumulative vehicle delay, and vehicle queue 

reward functions. 

○ SAC - Soft Actor-Critic is a variant of the Actor-Critic model that is sample 

efficient and generalizes well. Actor-Critic models learn both a value and policy 

function, with the actor learning the policy and the critic learning the value 

function and critiquing the actor’s policy. Soft Actor-Critic modifies the 

objective function and is off-policy, meaning it can use previous experiences 

from a replay buffer, similar to the DQN. It seeks to maximize entropy, meaning 

it maximizes the randomness of actions while still completing the task. We’d 

expect SAC to generalize well to other intersections compared to our other 

models. 

■ Implemented with a 2-layer fully-connected neural network, and 

experimented with both cumulative vehicle delay, and vehicle queue 

reward functions. 

● Our final objective is to create our own system for model implementations, establishing 

all relationships and enabling us to make final decisions about our results. This will allow 

us with the following: 

○ Modifying specific parameters to control how the learning or discount rate 

updates, which, given our limited configurations in this aspect, is a significant 

change – as the library is expected to make optimal choices. Nevertheless, we 

wanted to observe how it influenced our selections.. 

○ Specify varied reward functions – for instance, we could use a wait-time 

polynomial to derive the reward function, aiming to minimize both the average 

and maximum wait times (decreasing in the process a bit the average), as the 

current interface imposes limitations on us in this regard. This exploration is 

more broadly noted in our reevaluation of parameters. 

● We have attempted this final step, through the use of Intellilight as a baseline, but have 

encountered significant issues. Although we were able to run it, we ran into problems 

during the training process, and we need to investigate whether it was due to an error or a 

parameter setting that exceeds our hardware limitations. We can not use Purdue virtual 

machines, such as MC19, due to problems integrating SUMO and user restrictions for the 

installation of binaries. For the time being, our current implementations and integrations, 

while limiting in some configurations, have been suitable for answering our project 

scope. Re-evaluation of this final, more configurable system, would be ideal with further 

developments beyond our current scope if time was to allow. 

 



 

4. Assess Model 

4.1 Model assessment 

● We will look at the final results obtained after a short period of training, on this case we 

will not be able to apply certain statistics such as on classification but only see how well 

we have developed: 

 

Reward 

Function 

Algorithm Avg accumulated 

wait time 

Avg speed Avg stopped 

 

 

 

 

Vehicle 

Delay* 

PPO 9953.829 0.2534363 72.37255 

PPO EP4 6508.9 0.28 62.62 

DQN 8757.469 0.3116416 60.31016 

DQN EP13 6279.17 0.374 50.03 

SAC 21262.1 0.1536264 86.00357 

SAC EP11 14941.8 0.189 61.6 

 

 

 

 

Queue 

PPO 10746.65 0.2279387 64.11408 

PPO EP51 8311.144 0.2710836 73.82175 

DQN 11206.79 0.434218 57.19251 

DQN EP8 3619.561 0.2711 34.285 

SAC 15953.56 0.2523465 64.27273 

SAC EP9 10600.34 0.281 76.647 

 

* The models trained on the Vehicle Delay reward function were limited to speed 

distributions declared by the default config of SUMO, and remain unchanged due to time 

constraints – those in the Queue reward function are not exposed to this issue. 

 

Note: the evaluation statistics addressing specific episodes represent the best performers 

for a given model – while not necessarily being the last one. 

 



 

● We can see how the DQN model generally worked better, given a value function of 

vehicle queues relative to the other models on the basis of average accumulated wait time 

– holding the best case performance under that regard, while still maintaining competitive 

performance in maximizing average speed, and minimizing average stops. As for some of 

the worst performers, SAC performed among the worst when operating with a value 

function of vehicle delay, offering the worst average accumulated wait times, average 

speeds, and average stops, among all experimented models. 

● It is also interesting to note how the delay reward got a bit better results on the NN that 

perform the best which can be attributed both to the own reward function (which is the 

standard use in this field) and the fact that the distribution was different –  noting that we 

will need to solve the computational issues before comparing final results. 

● Also, some insightful conclusions can be drawn from the results on the relation of the 

evaluative statistics, as we see how most of the variables are correlated – like the highest 

mean speeds alongside the lowest wait times, or the lowest mean wait times with the 

lowest average total cars stopped. 

○ In some cases we see lower volumes of cars stopped but higher wait times, 

something that could be because in some cases we see how the policy tends to let 

some of the cars wait for longer periods of time in exchange for a lower overall 

average wait time. 

● Given the complexity of the final policies, alongside the black-box nature of the weights 

for the neural network decision-making processes, such values are not displayed. 

● We still have not reached the best-case expected result – one of the main reasons is 

training, for which we are aware of extended parameters and training times capable of 

increasing performance; however, given both hardware and time constraints, potential 

improvements with changes of configuration are drawn into question. 

● It’s important to note that results may not be directly indicative of the models' overall 

performance – as some of the models tend to perform better with exploration, while 

others may be in the exploitation phase. 

● We do not address model generalizability in this report.  

 

4.2 Revised parameter settings 

● Now, let’s take a look at the reward progressions of the given models, in terms of total 

rewards per episode: 

○ Waiting Time Rewards: 



 

 

 

 
 

○ Queue Rewards: 

 



 

 

 

 
 

Note: episodes 1 and 2 from each of the above model  

expressions have been excluded, due to rllib’s initialization 

behaviors.   

 

● The difference in the number of episodes between model types is due to rllib’s 

implementation of these models. All models were run for 10 iterations, but PPO would 

make more updates and therefore have more episodes. 

● One thing to note when evaluating our above reward progressions, is our limited 

convergence. We believe, given our limited training times, that the model is not given an 



 

adequate chance to develop its’ policy enough for convergence to appear in model 

performance and evaluations. The constraints and aspirations of such training times have 

been previously noted in section 4.1. 

○ It’s also important to recognize PPO’s behavior given its extension of episodes 

relative to the other models, demonstrating better convergence and more 

“reasonable” results – which further attributes to our assumption drawn on the 

impact of episodes or general training times on the convergence of total rewards. 

○ Also, good results on the first iterations may come from the hard exploration 

phase, where the model gives a lot of value to the randomness parameter. It looks 

like the approach of more or less random changes in light patterns performs 

relatively well on this type of problem. 

● As for hyperparameter revisions, apart from state, we are limited in our adjustments to 

those alluded to prior; however, we could experiment with adding new layers to our best 

model. One potential approach is to incorporate a recursive neural network, which may 

improve learning by taking into account the repetitive nature of the actions and 

environment; the neural networks themselves, apart from their depth, offer limited 

hyperparameters. 

● Another way we may look to revise our models for better evaluative performance, would 

be in the realm of adjustments to the reward functions. We have some already set up 

rewards functions, as demonstrated in the model descriptions, being that of a cumulative 

average wait time, and average vehicle queue. These reward functions, while providing 

insight and remaining a relatively common standard, could be optimized for 

improvements towards what we believe would be maximum wait times for vehicles. An 

adjusted reward function, such as a cumulative average wait time, where the accumulator 

applies an exponent to vehicles’ individual wait times, could leverage a balance between 

optimizing overall average wait times, alongside maximum wait times for individual 

vehicles – something that would resemble a more realistic and desired environment. 

● Changes towards our environmental configurations could also offer some insight: 

○ Vehicle flows: Adjustments to have probabilistic models rather than constants – 

introducing both moments of high and low flow for testing the generalizations of 

the model. 

■ Here it is important to reattribute our note on the reduction of scope, 

from the four intersections to only one. If time allows, exploring the 

possibility of a shared state, alongside an independent state of models for 

each intersection along the boulevard would be an interesting attribution; 

as it could have a direct impact on more realistic flows for a given 

intersection, alongside, of course, the inherent performance gains. Prior 

works, including Colight, are good references for diving into this 

phenomenon. 

○ Vehicle speeds: Seeing if constant speeds from cars would bring up better results 

– which could be interesting to take into consideration due to the possibility of 

this fact in the future years with automobile cars. 


